On the approximation of strongly convex functions by an upper or lower operator

نویسندگان

  • Osama Yousif Mohammed Alabdali
  • Allal Guessab
چکیده

The aim of this paper is to find a convenient and practical method to approximate a given real-valued function of multiple variables by linear operators, which approximate all strongly convex functions from above (or from below). Our main contribution is to use this additional knowledge to derive sharp error estimates for continuously differentiable functions with Lipschitz continuous gradients. More precisely, we show that the error estimates based on such operators are always controlled by the Lipschitz constants of the gradients, the convexity parameter of the strong convexity and the error associated with using the quadratic function, see Theorems 3.1 and 3.3. Moreover, assuming the function, we want to approximate, is also strongly convex, we establish sharp upper as well as lower refined bounds for the error estimates, see Corollaries 3.2 and 3.4. As an application, we define and study a class of linear operators on an arbitrary polytope, which approximate strongly convex functions from above. Finally, we present a numerical example illustrating the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

Topological structure on generalized approximation space related to n-arry relation

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

متن کامل

On a subclass of multivalent analytic functions associated with an extended fractional differintegral operator

Making use of an extended fractional differintegral operator ( introduced recently by Patel and Mishra), we introduce a new subclass of multivalent analytic functions and investigate certain interesting properties of this subclass.

متن کامل

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

Two Equivalent Presentations for the Norm of Weighted Spaces of Holomorphic Functions on the Upper Half-plane

Introduction In this paper, we intend to show that without any certain growth condition on the weight function, we always able to present a weighted sup-norm on the upper half plane in terms of weighted sup-norm on the unit disc and supremum of holomorphic functions on the certain lines in the upper half plane. Material and methods We use a certain transform between the unit dick and the uppe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 247  شماره 

صفحات  -

تاریخ انتشار 2014